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2-2 TELLEGEN’S THEOREM

Next, an important law of circuit theory, Tellegen’s theorem, will be introduced.
This basic theorem will help us understand the fundamental properties of phy-
sically realizable impedance functions discussed later in this chapter. It will also be
used much later in the book (in Chaps. 9 and 10) in connection with the sensitivity
analysis of circuits.

Consider the circuit shown in Fig. 2-4a. With the notations of Fig. 2-4b, the
Kirchhoff current laws (KCL) give

J1+J2 +Js =0
o b =0 (2-27)
—Jja—Jstje=0

+ 1)

l

Figure 2-4 (a) Linear circuit; (b) notations used in the analysis

(b)
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Note the use of associated directions' for v, and j, . Equations (2-27) can also be
written in the form+

Aj=0 (2-28)

where A is the incidence matrix
1 1 0 0 1 0f
A=10 -1 1 1 02 (2-29)
0 0 0 -1 -1 i &)
The elements of A are given by
{1+ if branch j leaves node i
a;= <—1 if branch j enters node i
0 if branch j is not incident with node i (2-30)
Similarly, from the Kirchhoff voltage law (KVL)
8 ot ()]
Uz = el T 6’2
03 = ez
(2-31)
L4 — 6’2 S e3
Usi= €1 = €3
U6 = 6’3
or, using (2-29),
v=ATe (2-32)

where A" denotes the transpose of A. Equations (2-28) and (2-32) are, of course,
the general matrix forms of the KCL and KVL, respectively.

Since all relations (2-27) to (2-32) involve only additions and subtractions,
they remain valid if we perform any linear operations on the j;, v, and ¢,;. For
example, they hold also for the Laplace transforms J(s), Vi(s), and E(s) or for the
phasors J;, V,, and E,, etc.

Let the branch power v, j, be summed for all N branches of the circuit. Then,
by (2-32) and (2-28),

N

2 o ji=V"j=(ATe)’j =e’(Aj) =0 (2-33)
k=1

Here the familiar rules (Ae)” = eTA”, (AT)" = A, and e"0 =0 of vector
algebra have been used.

Equation (2-33) is equivalent, of course, to the conservation of power in the
circuit, and thus its emergence from Kirchhoff’s laws is not too surprising.

+ Here, and in the rest of the book, x denotes a column vector and A denotes a matrix.
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Figure 2-5 Circuit with the same configuration as that of Fig. 2-4 but with different elements.

Consider, however, the circuit of Fig. 2-5, which has the same topological
configuration, same reference directions and numbering, and hence the same A as
the circuit of Fig. 2-4. Hence, all the equations (2-27) to (2-32) remain valid for
this circuit as well, with A remaining the same. Let the electric quantities of the
circuit of Fig. 2-5 be j, v, and e’. Then

Aj =0 (2-34)
and vV =ATe (2-35)
hold.

N
Next, let the physically meaningless quantity ) v, ji be found:
k=1

N
L o=V =(ATe)Tj =e"(Af) =0 (2-36)
k=1
where (2-32) and (2-34) were used. While the left-hand side of (2-36) does have the
dimension of watts, it does not correspond to physical power since v, and j} exist
in two different circuits.
An entirely analogous derivation gives

N
Yoig=vTi=0 (2-37)
k=1

Equations (2-36) and (2-37) are general forms and (2-33) is a special form of
Tellegen’s theorem. The general forms have great significance (as will be shown in
Chaps. 9 and 10) in the calculation of circuit sensitivities.

Consider now a linear passive RLCM one-port (Fig. 2-6). By (2-32), using
Laplace transformation,

V(s) = ATE(s) (2-38)
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Physical proof:

Construct a new network NN with the same topology. Choose a tree. Put voltage
sources in the tree branches, whose value equal the corresponding branch voltages of N’,
and put current sources in the links whose values equal the corresponding link of N.

Thus, conservation of power gives Tellegen’s theorem.
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Branches 2 to N

are inside the box \

)
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Figure 2-6 RLCM one-port.

and from (2-28), using Laplace transformation and taking the complex conjugate,

AJ*(s) =0 (2-39)

Hence Vi =EAI*—0 (2-40)
N

or Y Vi(s)JE(s)=0 (2-41)
=1

From Fig. 2-6 and Eq. (2-41), using i; = —j,, we get
— Vi(s)J¥(s) = Vi(s)It Z VJ¥ (2-42)
k=

Note that branches 2 to N are inside the one-port.
Defining the impedance of the one-port as the ratio of V;(s) and I,(s),

2 Vils) _ Va(s)IE(s) _ Vi(s)I%(s)
Z(s) & = = 3
Li(s) L) [1i(9)]
leads to
1 N
Z(s) = Vi(s)JE(s 2-43
() |11(S)|2k;2 k()k() ( )
It is easy to show, using an entirely analogous derivation, that the dual
relation
1,(s) 1
Y(s)& e VE(s)J () (2-44
Vl(s) 'Vl(g) |2 all u%rnal ( ) k )
branches

holds for the input admittance Y(s) of the one-port.
Equations (2-43) and (2-44) are fundamental to the analysis and design of
one-ports, as will be shown in the next section.
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Chap 3 Balabanian-Bickart

Network Functions

Driving-Point and Transfer Functions for Linear Networks

Node equations: ﬁ ($)E(s) = J_n (s) can (in principle) be solved using Cramer’s Rule, so

that the node voltages are given by

E(s) =Y, (5)J,(5) (a)
LE=J,=A(-1V.) (b)

A
Where the ij element of the inverse matrix is T”, A being the determinant of Y, and Aj;;
its 1j cofactor (signed subdeterminant). For a lumped linear circuit, A and the A;; are all

real and rational is s.

It follows from equation (a) that all response voltages and currents are weighted sums of
the excitations, which enter J (s).

S
N
Bl S >y 2
ot g example:
W () & l}:\ O Lumped Linear Network
{ 5 !
3 ) AT |
Fig. 1. Illustration for equivalent sources.
J Ipo+ Y1V Nodal current
J=|Je|=| —Too+1s |- o
- ! ! Excitation vector
Js —YiVa
YiAix— YA Ax—A Ay
Vi(s) = (W) Vo1 + (l‘_A_”) Ips + ( Ak) Is. k=1,2,3
A11 A12 A13 J(S)
E(s)=|A,, A, A, T Superposition

A31 A32 A33
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Driving-Point Functions (Immittances)

One-port circuit:

E;
. 4
+ No
Ji Vi indepdent RLCM
i source
Driving-point impedance:
V. (s)
Z(s) =—1—=
1,(s)
Driving-point admittance:
v b 1
Vi(s)  Z(s)

From (a), Z(s) = %; a real rational function of s.
s

The positive real (PR) property:
Z(s) is a PR function of s if e Z(s)=0 for Re s=0

Brune’s Theorem:

Any real rational PR Z(s) can be realized using physical RLCM elements (R, L, C
all = 0), and vice versa, any such physical impedance must satisfy the real rational PR
conditions.

Proof of the PR property:
Consider a circuit containing only R, L, and C elements. Foran R, V =R- J, so

. - R _
V-J =R-|J[". Similarly, foran L, V- J" = sL-|J]", and fora C, V- J = < J]*. Hence,
s

for the complete network, substituting into Tellegen’s Theorem with J; = 1A.

Z(s) = DV, (), (s) = F, () + %Vo(s) + 5T, (s)

Where,

2
J
Fo(s)=ERk|Jk2’ Vo(s)=2%’ and T”(s)=2Lk|Jk|2
k k k k
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Chap 3 Balabanian-Bickart

For a physical circuit, all Ry, Lg, Ci are non-negative real numbers, and hence so are F,,
V,, and T,, for any s.

Next let
§=0+ jw
1 o-jw o

= = =0
o+jo O+ O+’

1
Where o=0. Then both Re(s) and Re(-) = are non-negative, and hence so is
s

ReZ(s).

o
o +w’

The above can be extended to transformers.

The proof of the sufficiency of the real rational PR conditions is based on a synthesis,
which always leads to physical element values. It uses resistors, capacitors and closely
coupled transformers.

Brune synthesis
" +... s+3

s +... 2s+1

Closely coupled “physical transformer”

o AN AN
Z(s)—»
O
E]Z, |:> R§ or or
o o — 1
(b)
Figure 4-12 (a) Brune realization of an impedance Z(s); (b) realizations for the last impedance

Z
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Node Analysis Summary

A | Incidence matrix, all analysis in s domain

Kirchhoff’s Laws:

V :branch voltage vector

E :node voltage vector

I :branch current vector

0:zero vector

Branch Relations:

I':branch current vector
I'=s1-J I :element current vector

l:SOLtC@ current vector

V':branch voltage vector
V=V -V, V :element voltage vector
V. :souce voltage vector

I=YV Y :branch admittance matrix

Combining relations:

Y, =AY A’ Y, :node admittance matrix

=AlJ-YV] Jy :node current excitation vector

E=Jy generaizednode node equations




